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Abstract. We investigate the relation between quantum states and classical fixed-point bifurcations in
a coupled two-component Bose-Einstein condensate (BEC). It is shown that the classical bifurcations
are closely related to a topological change of the corresponding quantum levels, and such a structure
change can be manifested in the entanglement properties of the corresponding quantum states. That is,
the entanglement of the quantum states displays some peaks near the classical bifurcation points.

PACS. 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates – 03.67.Mn Entanglement
production, characterization, and manipulation – 05.30.Jp Boson systems – 05.40.-a Fluctuation phenom-
ena, random processes, noise, and Brownian motion

Quantum entanglement, as one of the most striking fea-
tures of quantum theory, is now regarded as a valu-
able resource that can be exploited to implement many
useful tasks in quantum information science [1]. Apart
from its practical applications, studies of the entangle-
ment characteristics of various interacting systems have
shed new insight into fundamental aspects of quantum
physics. Recently, a great deal of effort has been devoted
to understanding the impact of quantum phase transi-
tions (QPTs) on quantum entanglement [2–7]. In addition,
there have been attempts to relate chaos and localization
to entanglement [8,9]. Therefore, quantum entanglement
has provided a very useful tool to reexamine some well-
understood properties of complex many-body systems.

A QPT represents a qualitative change of the ground
state when a control parameter is changed across a critical
point. While in the classical version, a stationary solution
of minimal energy corresponds to a stable fixed point. As
the parameter is varied to a special value, the original fixed
point may lose its stability and some new unstable fixed
points may appear. Such a phenomenon was known as the
dynamical bifurcation. Thus it is natural to ask how the
classical critical behavior of a system can affect the quan-
tum entanglement. Schneider and Milburn first alluded to
such a link in the Dicke model [10]. They argued that the
ground state entanglement reaches a maximal value at a
classical bifurcation point. Then Hines and coworkers ex-
tended such an investigation to Jahn-Teller models and
coupled giant spins models exhibiting one exactly super-
critical pitchfork bifurcation [11,12]. It is demonstrated
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that when a fixed point undergoes a supercritical pitch-
fork bifurcation, the ground state achieves its maximum
amount of entanglement near the classical critical point.
The authors further conjectured that this will be a generic
feature of the systems whose classical limit exhibits such a
bifurcation. More recently, Hou et al. discussed the influ-
ence of this bifurcation on both static and dynamical en-
tanglement in an integrable quantum dimer model [13]. It
is pointed out that the highest excited state entanglement
instead of the ground state entanglement displays a peak
near the bifurcation point, and the mean entanglement,
defined to be averaged over time, exhibits a maximum
near the classical bifurcation point. These seem to mean
that the entanglement behavior near and at the bifurca-
tion points depends on the studied models. Therefore, it
would be interesting to understand in more detail the en-
tanglement properties of systems where different types of
bifurcations can be found.

In this brief note, we use a coupled two-component or
two-state Bose-Einstein condensate (BEC) as an example
to revisit the connection between the entanglement state
and bifurcation. The Hamiltonian takes the well known
form [13–16,18,19,21–27]: Ĥ = γ

2 (â†â − b̂†b̂) + c
2 (â†b̂ +

âb̂†) + u
4 (â†â − b̂†b̂)2, where generators and annihilators

â†, â and b̂†, b̂ are for two different quantum states. In the
Hamiltonian Ĥ , γ is the energy offset between the two
quantum states. The parameter c measures the coupling
between the two states while u is the interacting strength
between bosons. The parameter u can be positive or neg-
ative depending on the mixture of different components in
the spinor BECs [15]. In this system the total number of
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bosons N is conserved. We also notice that the quantum
dimer model considered in reference [13] corresponds for-
mally to a special case of γ = 0 and u = 2.0 in our model.
We find two different types of bifurcation existing in this
system: one is the saddle-node bifurcation and the other
the supercritical pitchfork bifurcation. Our results show
that the classical bifurcations are closely associated with
a topological change in the structure of the correspond-
ing quantum energy levels. The saddle-node bifurcation,
induced by the change of the energy offset γ, is related to
the avoided level-crossing. While for a vanishing γ = 0,
the change of the ratio of λ/c = (N − 1)u/c causes the
supercritical pitchfork bifurcation linked to the near de-
generacy of the structure of quantum energy levels. And
these changes in the structure of the quantum energy lev-
els and thus the classical bifurcations can be reflected in
the entanglement properties, that leads to some entangle-
ment peaks near the classical bifurcation points.

We now begin to derive the corresponding classical dy-
namics. Following reference [14], we introduce the angular
momentum operator Ĵ in terms of the two boson modes

Ĵx =
1
2
(â†b̂+ b̂†â), Ĵy =

i

2
(b̂†â− â†b̂), Ĵz =

1
2
(â†â− b̂†b̂),

(1)
for which the Casimir invariant is Ĵ2 = (N/2)(N/2 + 1).
The Hamiltonian of the system can thus be of a simple
form

Ĥ = γĴz + uĴ2
z + cĴx. (2)

It is convenient to choose the simultaneous eigenstates of
Ĵ2 and Ĵz as a basis defined by

Ĵ2|j,m〉 = j(j + 1)|j,m〉, Ĵz|j,m〉 = m|j,m〉, (3)

where

|j,m〉 =
(â†)N/2+m(b̂†)N/2−m

√
(N/2 +m)!(N/2 −m)!

|vac〉. (4)

Here the values of m range from −N/2 to N/2 and
j = N/2, and |vac〉 denotes the vacuum state. To obtain
the corresponding classical dynamics, we use a generalized
spin coherent state (SCS) as the initial state, which mini-
mizes the initial uncertainty product, so that the mean
values of some physical quantities have the correspon-
dence in classical phase space. Such a state may be defined
by [17]

|θ, φ〉 = exp [−iθ(Jx sinφ− iJy cosφ)] |j,−j〉. (5)

Utilizing these useful relations 〈θ, φ|Ĵz |θ, φ〉 = −j cos θ,
〈θ, φ|Ĵ2

z |θ, φ〉 = j(j− 1/2) cos2 θ+ j/2 and 〈θ, φ|Ĵx|θ, φ〉 =
j sin θ cosφ, we obtain the corresponding classical Hamil-
tonian (up to a trivial constant)

Hcl = 〈θ, φ|Ĥ |θ, φ〉/j = γz− 1
2
λz2 + c

√
1 − z2 cosφ, (6)

where z = − cos θ denotes the population difference be-
tween the two internal states and φ the relative phase,

and λ = (N − 1)u. If we use the the population differ-
ence z and relative phase φ as the classical canonical vari-
ables, the equations of motion are given by the classical
Hamiltonian as [14,16]

ż = c
√

1 − z2 sinφ, (7)

φ̇ = γ + λz − c
z√

1 − z2
cosφ, (8)

which are similar to that for the condensates in a double-
well potential [18,19]. We have investigated such a system
in mean field mechanism [20]. One distinct difference be-
tween the two models is the sign of the parameter u. For
the case of condensates in a double-well potential, the sign
is just determined by the sign of the scattering length, but
for our case the sign is determined by the mixture of dif-
ferent components in the real spinor BEC [15].

Because bifurcations are often accompanied by a loss
of stability and the appearance of new fixed points, one
can explore the bifurcation behavior by analyzing the
change of the number of the corresponding fixed points
or stationary states [21–24]. The stationary state solu-
tions of equations (7) and (8) can be determined from
dz/dt = 0 and dφ/dt = 0. In the region [0, 2π) of the
relative phase, we find two different modes of stationary
states in the system: one is the equal-phase mode with zero
relative phase φ = 0, and the other the anti-phase mode
with the relative phase φ = π. Small oscillations around
those stationary states with nonzero the population dif-
ference z are macroscopic quantum self-trapping (MQST)
states [18,19]. If the MQST states only oscillate around
dz/dt = 0, running-phase MQST states appear. On the
other hand, many novel features have been revealed in
this system through bifurcation, including the nonlinear
Landau-Zener tunneling [23] and hysteresis [24]. The num-
ber of fixed points mainly depends on the ratios γ/c,
λ/c and the relative phase. For the equal-phase mode, only
one stable fixed point exists for λ/c ≤ 1 . When λ/c > 1,
there are two stable fixed points and one unstable fixed
point for (λ/c)2/3−(γ/c)2/3 > 1, and only one stable fixed
point exists for (λ/c)2/3−(γ/c)2/3 < 1. Saddle-node bifur-
cations occur at the points satisfying (λ/c)2/3−(γ/c)2/3 =
1. For the anti-phase mode, the parametric dependence of
fixed points and stationary states is very different. When
λ/c ≥ −1, only one fixed point appears and it is sta-
ble. When λ/c < −1, two stable and one unstable fixed
points exist for (λ/c)2/3 − (γ/c)2/3 > 1 and only one
stable fixed point emerges for (λ/c)2/3 − (γ/c)2/3 < 1.
Saddle-node bifurcations also occur at the points satisfy-
ing (λ/c)2/3 − (γ/c)2/3 = 1. The saddle-node bifurcation
is fundamental in the study of nonlinear system, since this
is one of the most basic processes by which a pair of pe-
riodic orbits are created, one of them is always unstable
(the saddle), while the other periodic orbit is always sta-
ble (the node). From the above analysis, we can see that
the system will show various different forms of saddle-
node bifurcations depending on different system parame-
ters. The fixed points of this classical system correspond
to the eigenstates of the quantum Hamiltonian, which can
be expanded in terms of Fock states (see Eq. (11)). At a
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Fig. 1. (Color online) Energy levels from the quantum model

Ĥ (N = 10) and the classical Hamiltonian Hcl for (a) λ/c =
−0.5 and (b) λ/c = −2. The dot lines are quantized energy
levels; the open circles are classical energy levels. Compared
with the classical energy, the quantized energy levels from Ĥ
have been divided by N/2.

fixed number of bosons N , the quantum Hamiltonian be-
comes a (N + 1)× (N + 1) matrix and then the quantum
states can be numerically calculated. Here we consider the
case where the parameter u is taken as negative value, so
that the classical bifurcations are related to the lower part
of the quantum energy levels, only including the ground
state and a few low excited states. Figure 1 shows the clas-
sical energy and the corresponding quantum energy struc-
tures as functions of γ. Clearly, there is a drastic change in
the structure of energy levels as the interaction strength λ
changes: a net of anti-crossings appearers in the lower part
of the quantized energy levels when λ/c < −1. In partic-
ular, the classical energy levels (a loop structure) envelop
the net anti-crossings in the quantum energy levels, also
discussed in depth in references [25,26].

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

−λ/c

E
n

er
g

y
Fig. 2. Energy levels from the quantum model Ĥ (N = 20)
and the classical Hamiltonian Hcl. The dot lines are quantized
energy levels; the open circles are classical energy levels. Com-
pared with the classical energy, the quantized energy levels
from Ĥ have been divided by N/2.

For the case γ = 0, the supercritical pitchfork bi-
furcation will occur. This type of bifurcation is com-
mon in physical problems that have a symmetry. For the
equal-phase mode, only one stable fixed point z = 0 ex-
ists if λ/c < 1, and two new stable fixed points z± =
±√

1 − (λ/c)−2 appear if λ/c > 1 accompanied by a loss
of stability of the original one z = 0. This means a su-
percritical pitchfork bifurcation takes place at λ/c = 1.
However, for the anti-phase mode, the supercritical pitch-
fork bifurcation occurs at λ/c = −1. There is only one
stable fixed point z = 0 for λ/c > −1 and two stable
fixed points z± = ±√

1 − (λ/c)−2 with an unstable one
z = 0 for λ/c < −1. Figure 2 shows the classical en-
ergy and the corresponding quantum energy structures as
functions of −λ/c. Obviously, as the ratio −λ/c increases,
the ground state and the first excited state of the quan-
tum system become nearly degenerate, while the classical
descriptions experience the supercritical pitchfork bifurca-
tion. Figure 3 refers to the energy gap between the lowest
two eigen-energies in the quantum Hamiltonian as a func-
tion of the ratio −λ/c. It can be inferred that as N → ∞,
the quantum nearly degenerate point approaches the clas-
sical bifurcation points −λ/c = 1.

Many particle entanglement have been widely stud-
ied in this system, which allows to investigate the bound-
ary between quantum physics and classical physics [14].
For instance, it has been shown that the coherent inter-
actions in a BEC allow to generate many-particle entan-
glement [28]. We now employ the entropy of subsystem
as a measure of the quantum entanglement [27] to discuss
the relation between the quantum states and the classical
bifurcations. More precisely, we will use the von Neumann
entropy of the reduced density operator of any subsystem.
The reduced density operator of a subsystem is achieved
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Fig. 3. Energy gap between the lowest two eigen-energies in
the quantum Hamiltonian at γ = 0. The total number N is (a)
N = 20, (b) N = 50, (c) N = 100, (d) N = 150, respectively.

by tracing out the other subsystem via the partial trace.
Once we obtain the reduce density matrix, the entangle-
ment can be readily calculated. If ρab is the density op-
erator describing some states of a bipartite system, the
reduced density operator for subsystem a is defined by

ρa = Trb (ρab) (9)

where Trb is the partial trace over subsystem b. The en-
tropy of entanglement is then written as

E(ρa) = −Tr (ρa log (ρa)) = −
∑

k

λk log (λk) (10)

where the logarithm is taken in base 2, and {λk} are the
set of eigenvalues of the reduced density operator ρa. The
value of E varies between 0 (for the separable product
states) and a maximum of log d (for the maximally entan-
gled states corresponding to a completely mixed density
operator), where d is the dimension of the Hilbert space
of the subsystem. A general state of the system can be
expressed in term of the Fock states as

|ψ〉 =
N∑

n=0

cn(t) |n〉a |N − n〉b , (11)

which implies that the mode a has n bosons and the mode
b has N − n bosons at the same time, where cn satisfies
the normalizing condition

∑N
n=0 |cn(t)|2 = 1.

Using the Fock basis, we have

ρab = |ψ〉〈ψ| =
N∑

n,m=0

cmc
∗
n|m〉a|N −m〉ba〈m|b〈N − n|.

(12)

The reduced density operator of mode a is obtained by
taking the partial trace with respect to mode b

ρa = Trb(|ψ〉〈ψ|) =
N∑

n=0

|cn(t)|2|n〉aa〈n|. (13)

From the above expression, we can see that the reduced
density operator in the Fock basis is diagonal and the
eigenvalues are simply |cn(t)|2. The entropy of entangle-
ment between the two modes thus reads

E(ρa) = −Tr(ρa log ρa) = −
N∑

n=0

|cn(t)|2 log |cn(t)|2. (14)

Figure 4 pertains to the behavior of the entanglement
for the three lowest eigenstates as shown in part b of
Figure 1. A distinct change in the behavior of entan-
glement properties near the anti-crossing points is ob-
served. The ground state entanglement displays a peak
exactly at the anti-crossing point γ = 0 (Fig. 4a). For
the first excited state, the entanglement reaches its lo-
cal maxima near the anti-crossing points γ = 0,±0.045
(Fig. 4b). For the second excited state, there are five
the anti-crossing points shared with other quantum en-
ergy levels, γ = 0,±0.045,±0.09, where the entanglement
approaches an extremum (Fig. 4c). Interestingly, two of
these anti-crossing points, γ = ±0.09, are very close to
the classical bifurcation points. Similarly, Figure 5 shows
the influence of the supercritical pitchfork bifurcation on
the ground state entanglement in the case of γ = 0. It is
clear that the ground state entanglement displays a peak
at a quantum critical point that tends to the correspond-
ing classical bifurcation point (−λ/c = 1) as N → ∞.
These may be an indicator of the corresponding classical
dynamics.

In summary, we have studied the influence of the clas-
sical bifurcation behavior on quantum states, including
the ground state entanglement and the low excited state
entanglement. The system under consideration displays
two different types of bifurcations: one is the saddle-node
bifurcation and the other the supercritical pitchfork bi-
furcation. It is shown that the classical bifurcations are
closely associated with a topological change in the struc-
ture of the corresponding quantum levels. The saddle-node
bifurcation is related to the avoided level-crossing of some
quantum levels, and the supercritical pitchfork bifurcation
is linked to the near degeneracy of some quantum lev-
els. We find that the entanglement of the quantum states
involved in the classical bifurcation displays some peaks
near the classical bifurcation points. At the same time,
the sign of the interaction parameter u can play an im-
portant role in determining the structure of the quantum
levels. The classical bifurcations are related to the higher
part of the quantum levels in the case of positive u, while
they are associated with the lower part of the quantum
levels in the case of negative u [13,21–24]. Our results are
strongly related to similar behaviour in works [11,12]. We
note that the supercritical pitchfork bifurcation studied in
references [11,12] is related to a structure change of the
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Fig. 4. Von Neumann entropy of the three lowest states of the
quantum model Ĥ . (a) The ground state, (b) the first excite
state, (c) the second excited state. Other parameters are the
same as in Figure 1b.
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Fig. 5. The dependence of the von Neumann entropy of the
ground states for the quantum model Ĥ on parameter λ/c for
(a) N = 20, (b) N = 50, (c) N = 100, (d) N = 150.

ground state, while the same bifurcation in reference [13]
is linked to a structure change of the highest excited state.
These results do not really differ, but instead arise from
the same phenomenon, happening in different parts of the
spectrum.
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